A Fast Edge-Splitting Algorithm in Edge-Weighted Graphs

نویسنده

  • Hiroshi Nagamochi
چکیده

Let H be a graph with a designated vertex s, where edges are weighted by nonnegative reals. Splitting edges e = {u, s} and e′ = {s, v} at s is an operation that reduces the weight of each of e and e′ by a real δ > 0 while increasing the weight of edge {u, v} by δ. It is known that all edges incident to s can be split off while preserving the edge-connectivity of H and that such a complete splitting is used to solve many connectivity problems. In this paper, we give an O(mn + n2 log n) time algorithm for finding a complete splitting in a graph with n vertices and m edges. key words: algorithm, connectivity augmentation, edge-connectivity, edgesplitting, extreme vertex sets, graph

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Perfect Matchings in Edge-Transitive Graphs

We find recursive formulae for the number of perfect matchings in a graph G by splitting G into subgraphs H and Q. We use these formulas to count perfect matching of P hypercube Qn. We also apply our formulas to prove that the number of perfect matching in an edge-transitive graph is , where denotes the number of perfect matchings in G, is the graph constructed from by deleting edges with an en...

متن کامل

CERTAIN TYPES OF EDGE m-POLAR FUZZY GRAPHS

In this research paper, we present a novel frame work for handling $m$-polar information by combining the theory of $m-$polar fuzzy  sets with graphs. We introduce certain types of edge regular $m-$polar fuzzy graphs and edge irregular $m-$polar fuzzy graphs. We describe some useful properties of edge regular, strongly edge irregular and strongly edge totally irregular $m-$polar fuzzy graphs. W...

متن کامل

On the Complexity of the Max-Edge-Coloring Problem with Its Variant

The max-edge-coloring problem (MECP) is finding an edge colorings {E1, E2, E3, ..., Ez} of a weighted graph G=(V, E) to minimize { } ∑ = ∈ z i i k k E e e w 1 ) ( max , where w(ek) is the weight of ek. In the work, we discuss the complexity issues on the new graph problem and its variants. Specifically, we design a 2-approximmation algorithm for the max-edge-coloring problem on biplanar graphs....

متن کامل

On the signed Roman edge k-domination in graphs

Let $kgeq 1$ be an integer, and $G=(V,E)$ be a finite and simplegraph. The closed neighborhood $N_G[e]$ of an edge $e$ in a graph$G$ is the set consisting of $e$ and all edges having a commonend-vertex with $e$. A signed Roman edge $k$-dominating function(SREkDF) on a graph $G$ is a function $f:E rightarrow{-1,1,2}$ satisfying the conditions that (i) for every edge $e$of $G$, $sum _{xin N[e]} f...

متن کامل

Distinct edge geodetic decomposition in graphs

Let G=(V,E) be a simple connected graph of order p and size q. A decomposition of a graph G is a collection π of edge-disjoint subgraphs G_1,G_2,…,G_n of G such that every edge of G belongs to exactly one G_i,(1≤i ≤n). The decomposition 〖π={G〗_1,G_2,…,G_n} of a connected graph G is said to be a distinct edge geodetic decomposition if g_1 (G_i )≠g_1 (G_j ),(1≤i≠j≤n). The maximum cardinality of π...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEICE Transactions

دوره 89-A  شماره 

صفحات  -

تاریخ انتشار 2006